Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 117(1): 41, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400879

RESUMO

In the search of new enzymatic activities with a possible industrial application, we focused on those microorganisms and their molecular mechanisms that allow them to succeed in the environment, particularly in the proteolytic activity and its central role in the microorganisms' successful permanence. The use of highly active serine proteases for industrial applications is a modern need, especially for the formulation of detergents, protein processing, and hair removal from animal skins. This report provides the isolation and identification of a highly proteolytic fragment derived from DegQ produced by a Pseudomonas fluorescens environmental strain isolated from a frog carcass. Zymograms demonstrate that a 10 kDa protein mainly generates the total proteolytic activity of this strain, which is enhanced by the detergent SDS. Mass spectroscopy analysis revealed that the protein derived a couple of peptides, the ones showing the highest coverage belonging to DegQ. Interestingly, this small protein fragment contains a PDZ domain but no obvious residues indicating that it is a protease. Protein model analysis shows that this fragment corresponds to the main PDZ domain from DegQ, and its unique sequence and structure render a proteolytic peptide. The results presented here indicate that a novel DegQ fragment is sufficient for obtaining high protease activity highlighting that the analysis of environmental microorganisms can render new strains or enzymes with helpful biotechnological characteristics.


Assuntos
Domínios PDZ , Pseudomonas , Animais , Pseudomonas/genética , Pseudomonas/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Peptídeos , Serina Proteases
2.
PeerJ ; 11: e16309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849831

RESUMO

The complex metabolism of Escherichia coli has been extensively studied, including its response to oxygen availability. The ArcA/B two-component system (TCS) is the key regulator for the transition between these two environmental conditions and has been thoroughly characterized using genetic and biochemical approaches. Still, to date, limited structural data is available. The breakthrough provided by AlphaFold2 in 2021 has brought a reliable tool to the scientific community for assessing the structural features of complex proteins. In this report, we analyzed the structural aspects of the ArcA/B TCS using AlphaFold2 models. The models are consistent with the experimentally determined structures of ArcB kinase. The predicted structure of the dimeric form of ArcB is consistent with the extensive genetic and biochemical data available regarding mechanistic signal perception and regulation. The predicted interaction of the dimeric form of ArcB with its cognate response regulator (ArcA) is also consistent with both the forward and reverse phosphotransfer mechanisms. The ArcB model was used to detect putative binding cavities to anaerobic metabolites, encouraging testing of these predictions experimentally. Finally, the highly accurate models of other ArcB homologs suggest that different experimental approaches are needed to determine signal perception in kinases lacking the PAS domain. Overall, ArcB is a kinase with features that need further testing, especially in determining its crystal structure under different conditions.


Assuntos
Proteínas de Escherichia coli , Anaerobiose , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Dimerização , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Teóricos , Fosforilação , Proteínas Quinases/genética , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...